

Európai Unió Európai Strukturális és Beruházási Alapok

Magyarország Kormánya

Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan

By: Muhammad Wajahat Ramay

(Polymers, 2023)

By; Nuzhat Javed , Sana Muhammad , Muhammad Wajahat Ramay ,Shazia Iram, Mariem Damak, György Fekete , Zsolt Varga, András Székács and László Aleksza*, Institute of Environmental Sciences, MATE, Gödöllö, Hungary

Introduction

- Every year, approximately 300 million tons of plastic waste is generated globally.
- In developing countries, the dual challenge of managing plastic waste and addressing energy needs is even more pronounced.
- Pakistan alone generated more than two million metric tons of plastic waste in 2016 (Law et al., 2020).
- Due to poor waste management, majority of this waste is disposed off into the dumpsites unattended.
- This study was therefore conducted to find a solution for plastic waste management problems, as well as to find an alternative to mitigate the current energy crisis.

PRODUCTION OF PLASTIC

Global annual plastic production in million tonnes.

Aims & Objectives

- To provide an efficient solution to mitigate the issues of energy crisis and plastic waste management by pyrolysis of the most abundantly found plastics in MSW
- Analyze and compare the yield and quality of fuel derived from different types of plastics, particularly those frequently found in waste locations in Pakistan.
- Explore the feasibility and efficiency of the pyrolysis process with and without the use of a catalyst.
- Address the pressing challenges of plastic waste management in developing countries, using Pakistan as a case study.
- Contribute to sustainable solutions for developing countries by converting plastic waste to fuel.
- Without advocating plastic production, find a cost-efficient solution which leads to eliminating plastic waste and reducing municipal solid waste.

Materials and Methods

- Five types of plastic materials were used:
- Polyethylene terephthalate (PET)
- High-density polyethylene (HDPE)
- Low-density polyethylene (LDPE)
- Polypropylene (PP)
- Polystyrene (PS)
- All of these plastics were collected from dumpsites.
- Chosen because they constitute the majority of plastic waste volume.
- Subjected to thermal decomposition in a pyrolysis reactor (Approx. Total Cost: < 700 €)

Materials and Methods

- Post initial pilot study in lab, main study was conducted using a steel reactor (figure).
- Pyrolysis at 450 °C for PS and HDPE; 500–550 °C for LDPE, PP, and PET.
- With and without catalyst (Ca(OH)2)
- Average conversion time: 90 mins
- Physical Analysis (yield, color, density, viscosity)
- Calorific Value
- By-Products and Conversion Rate.
- Chemical Analysis;
- Techniques: FT-IR and GC-MS.

Setup of the Reactor

Results

- Similar yields with/without catalyst; noncatalyzed took longer.
- Catalyst abandoned due to cost, odor, and coke formation.
- Effective pyrolysis temperature: 400-600°C.
- HDPE: highest yield at 82%.
- Yields align with other scientific studies.
- Fuels' viscosities ranged between 0.9 to 2.2 cSt.
- Fuels had distinct colors due to colorants in plastics

Fuels post pyrolysis

Results

- Calorific Value
- LDPE- and PET-derived fuels: highest and lowest values (46.2 MJ/kg and 42.8 MJ/kg).
- Average calorific value: 44.7 ± 1.9 MJ/kg.
- Comparable to gasoline or diesel.
- High Conversion Rates
- Most plastics converted effectively into fuel.
- PET: 96.5%, HDPE: 93.5%
- Highest rate: 99% for PP , PET: 96.5%, HDPE: 93.5% .
- High conversion rates demonstrate plastics' potential for cost-effective conversion into alternative fuels.

Plastic Type ¹	Fuel				Energy
	Yield (%)	Density (g/mL)	Viscosity ² (cSt)	Calorific Value (MJ/kg Fuel)	Conversion (MJ/kg Plastic)
PET	10.7	1.00	2.20	42.4	4.5
HDPE	82.2	0.78	1.60	45.9	37.7
LDPE	58.0	0.70	1.41	46.2	26.8
PP	61.8	0.75	1.58	46.2	28.6
PS	50.0	0.91	0.99	42.8	21.4
Gasoline	_	0.74	1.70 ³	45.8	_
Diesel	-	0.83	2.61 ³	45.5	_

¹ Abbreviations: PET—polyethylene terephthalate; HDPE—high density polyethylene; LDPE—low density polyethylene; PP—polypropylene; PS—polystyrene. ² Viscosity determined at 60 °C. ³ Viscosity determined at 40 °C.

Results - Chemical Analysis

- **1. PET-Derived Fuel:** Presence of functional groups like alkene, alkane, carbonyl, and ether.
- 2. HDPE-Derived Fuel: Indicated three significant functional groups: aldehydes, alkenes, and alkanes. Peaks like 873 cm-1 and 1411 cm-1 represented respective functional groups.
- **3.Observations:** FT-IR results across different plastic-derived fuels showed similar functional group compositions, with alkenes and alkanes being the most common. Peaks ranging from 675 to 1000 cm-1 indicated the existence of alkenes.

GC-MS Results

- **1. PET-Derived Fuel:** Hydrocarbon chains ranged from C9–C24, with notable compounds like biphenyl and quaterphenyl identified.
- 2. HDPE & LDPE-Derived Fuel: Aliphatic hydrocarbons detected in HDPE fuel ranged from C10 to C21, while LDPE fuel showed chains between C10 and C28.
- **3.Observations:** Pyrolysis fuels contained compounds are also found in commercial fuels, such as diesel, suggesting their potential for diverse applications.

Key Takeaways

Pyrolysis Success:

- Fuels from 5 plastics were obtained.
- Especially relevant for developing countries like Pakistan.

Comparison to Traditional Fuels:

- Comparable properties to diesel and gasoline.
- High calorific values suitable for heating, cooking, and boilers.

Refinement and Application:

- Potential for use in combustion engines post-refinement.
- Some pyrolysis fuels emitted more gases due to unsaturated hydrocarbons.
- Direct use as furnace oil in industries or homes after refining.
- Economic Benefits:
 - Emphasis on the cost-effectiveness of this technology.
 - Solution to energy crises and plastic waste problems.

Conclusions

- **1. Dual Solutions**: Addressed energy crisis and plastic waste in developing countries through pyrolysis of plastics obtained from MSW.
- **2. Fuel Quality**: Pyrolysis fuels, especially from HDPE, yielded high calorific values comparable to diesel and gasoline.
- **3. Reactor Design**: Potential improvements in reactor design can enhance yield and efficiency.
- **4.Future Potential**: Promising technique for waste management, energy needs, and promoting circular economy in regions like Pakistan.

6. Future Directions & Collaborations:

- Collaboration with refineries, especially Attock Refinery Limited (ongoing)
- Encourage replication at smaller scales due and use in other cases (ongoing)
- Entrepreneurship opportunities for local community.

Acknowledgements

Hungarian National Research, Development, and Innovation Office

Hungarian Ministry of Technology and Industry (project KEHOP-3.2.1-15-2021-00037).

Collaboration:

Centre for Circular Economy Analysis and Knowledge, MATE, for fostering international collaboration.

11

Individual Acknowledgements:

Profikomp[®]: Prof. Dr. László Aleksza, Dr. György Fekete , Dr. Zsolt Varga, Mariem Damak

Institute of Environmental Sciences: Prof. Dr. András Székács

Personal Thanks to: Dr. Lilla Gilián, Dr. Adil Saleem

National Cleaner Production Centre (NCPC, Pakistan)

